logical geometry
 
 


 
 

2D Aristotelian diagrams

This page provides a number of 2D Aristotelian diagrams that can be constructed with bitstrings of length 4 (the bitstring representation format is introduced here). Based on the types of bitstrings they contain, we distinguish various families of: For the visual representation of the Aristotelian relations we use the following two colour and line coding systems:

colour codes

Aristotelian squares

  balanced classical square balanced degenerated square  
  classical square


2 bitstrings of level 1
2 bitstrings of level 3
degenerated square


4 bitstrings of level 2
 

Aristotelian hexagons

JSB strong hexagon JSB weak hexagon SC hexagon
Jacoby-Sesmat-Blanché hexagon (strong)


2 bitstrings of level 1
2 bitstrings of level 2
2 bitstrings of level 3
Jacoby-Sesmat-Blanché hexagon (weak)
(Moretti-Pellissier)

3 bitstrings of level 1
3 bitstrings of level 3
Sherwood-Czezowski hexagon


2 bitstrings of level 1
2 bitstrings of level 2
2 bitstrings of level 3
  unconnected-4 hexagon unconnected-12 hexagon  
  Unconnected-4 hexagon
(Smessaert-Demey)

1 bitstring of level 1
4 bitstrings of level 2
1 bitstring of level 3
Unconnected-12 hexagon
(Smessaert-Demey)

6 bitstrings of level 2
 

Aristotelian octagons

  Moretti-Pellissier octagon B├ęziau octagon  
  Moretti-Pellissier octagon

4 bitstrings of level 1
4 bitstrings of level 3
Béziau octagon

2 bitstrings of level 1
4 bitstrings of level 2
2 bitstrings of level 3
 
  Buridan octagon  
  Buridan octagon

2 bitstrings of level 1
4 bitstrings of level 2
2 bitstrings of level 3
 
 
 

April 18, 2016   www.logicalgeometry.org